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Abstract

This paper introduces a new approach for improving the performance and versatilétyeoéd Manufacturing
(LM), which is an emerging technology that makes it possible to build physical prototypes of 3D parts directly
from their computer models using a “3D printer” attached to a personal computer.

Current LM processes work by viewing the computer model as a single, monolithic unit. By contrast, the
approach proposed here decomposes the model into a small number of pieces, by intersecting it with a suitably
chosen plane, builds each piece separately using LM, and then glues the pieces together to obtain the physica
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prototype. This approach allows large models to be built quickly in parallel. Furthermore, it is very efficient in its
use of so-called support structures that are generated by the LM process.

This paper presents the first provably correct and efficient geometric algorithms to decompose polyhedral models
so that the support requirements (support volume and area of contact) are minimized. Algorithms based on the
plane-sweep paradigm are first given for convex polyhedra. These algorithms rnlivg®@) time for n-vertex
convex polyhedra and work by generating expressions for the support volume and contact-area as a function of the
height of the sweep plane, and optimizing them during the sweep. These algorithms are then generalized to non-
convex polyhedra, which are considerably more difficult due to the complex structure of the supports. It is shown
that, surprisingly, non-convex polyhedra can be handled by first identifying certain critical facets using a technique
called cylindrical decomposition, and then applying the algorithm for convex polyhedra to these critical facets. The
resulting algorithms run in @2 logn) time. Also given is a method for controlling the size of the decomposition,
so that the number of pieces generated is within a user-specified limit. Experimental results show that the proposed
approach can achieve significant reduction in support requirements in both the convex and the non-convex case
0 2001 Elsevier Science B.V. All rights reserved.

Keywords: Computational geometry; Cylindrical decomposition; Layered manufacturing; Optimization; Plane sweep; Rapid
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1. Introduction

The field of computer-aided design and manufacturing has now progressed to the point where an
engineer can not only design and test a virtual model of a 3D part on a personal computer, but can also
generate directly from the model a physical prototype of the part, using a relatively small and inexpensive
“3D printer” attached to the computer [19]. This technology, caRegid Prototyping (RP), provides the
engineer with an additional level of physical verification that makes it possible to detect and correct
flaws that may, otherwise, have gone unnoticed. RP is used extensively in the automotive, aerospace, an
medical industries.

At the heart of RP is a manufacturing technique callegered Manufacturing (LM). The basic
principle underlying LM is simple: the computer model is oriented suitably and sliced into thin layers
by horizontal planes. The layers are then sent over a network to a fabrication device which “prints” them
one by one, each on top of the previous one.

Fig. 1 depicts a widely-used LM process called Stereolithography. In essence, the Stereolithography
Apparatus (SLA) consists of a vat of light-sensitive liquid resin, a platform, and a laser. The input
to the process (and to virtually all other LM processes) is a surface triangulation of the model in the
industry-standard STL format. This format merely consists of an unordered list of the triangles, where
each triangle is specified by listing its three vertices and its outward-directed unit-rfofin@lmodel is
oriented suitably, sliced by horizontal planes, and then built in the vertical direction as follows: Initially,
the platform is below the surface of the resin at a depth equal to the layer thickness. The laser traces out
the contour of the first slice on the surface and then fills in the interior in a raster-like pattern — a process
calledhatching. The resin then hardens to a depth equal to the slice thickness and forms the first layer,
which rests on the platform. Next, the platform is lowered by an amount equal to the layer thickness, the

4 The simplicity of the STL format has led to its widespread adoption in the LM industry. However, the format does have
some inadequacies and alternative formats have been proposed; see, for instance, [15,26].



I. llinkin et al. / Computational Geometry 23 (2002) 117-151 119

Laser T Build direction
First slice and supports oS L - g.lzcedlmodel
for second slice built | irst slice
7#% L] [
_ N Supports for second slice
Platform
A Light-sensitive
liquid resin

Fig. 1. The stereolithography apparatus.

vacated region is re-coated with resin, and the second layer is then built in the same way. Ideally, each
layer after the first one should rest in its entirety on the previous one. In general, however, portions of a
layer can overhang the previous layer, so additional structures, sapipdrts, are needed to hold up the
overhangs. Supports are generated automatically during the process itself. For this the model is analyzec
a priori and a suitable description of the supports is generated and merged into the STL file. Once the
part has been made, it is postprocessed to remove the supports and to improve the surface finish, whicl
has a stair-stepped appearance owing to the discretization into layers.

1.1. Geometric issues in layered manufacturing

Unfortunately, the time requirements of present-day LM processes is quite high — often running into
hours. Generally, an LM process consists of three phases: preprocessing, building, and postprocessing
Preprocessing includes repairing flaws in the STL file (e.g., gaps between facets, geometric singularities,
etc. [5,8]), deciding upon a suitable initial orientation for the model (or, equivalentlauitedirection),
computing support requirements, generating and merging a description of the supports into the STL
file, and slicing the model and supports. The building phase involves tracing and hatching each layer.
Postprocessing includes removal of supports and improving part finish and accuracy.

All of these tasks are influenced by geometric considerations [5,17]. In particular, the orientation of the
part impacts the number of layers, the quantity of supports, the location of supports on the part, the extent
to which supports “stick” to the part, and the surface finish and accuracy. The layer geometry affects the
tool-path during hatching. The STL representation is not well suited for the efficient computation of
slices and supports as it does not contain any topological information about the model.

In current systems these issues are resolved in an ad hoc manner, through human intervention. Fo
instance, the part is oriented by the operator, based on experience, so that the quantity of supports use:
is “small” and the finish is “good”. However, over the past few years the problem of automating these
decisions via efficient and correct algorithms has been addressed by several researchers in computationg
geometry.

Asberg et al. [3] (see also [9]), describe efficient algorithms to decide if a given model can be built
without supports using Stereolithography. Majhi et al. [25] give algorithms to minimize the volume of
supports and the area of contact between supports and the part for convex polyhedra, and show how tc
minimize the stair-step error for non-convex polyhedra. They also show how to reconcile multiple design
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criteria simultaneously [23] and give support optimization algorithms for non-convex polygons [24]. (See
also [22].) Schwerdt et al. show how to choose a build direction that protects prescribed facets from being
damaged by supports [30] and to minimize the number of layers [31]. Recently, Agarwal and Desikan [1]
have given an efficient algorithm to approximate a build direction which minimizes the contact-area for
a convex polyhedron. Johnson [20] shows how to compute support descriptions efficiently for a given
build direction and McMains and Séquin [27] show how to slice a model efficiently using the plane
sweep paradigm. Barequet and Kaplan [6] describe the design of a software front-end for automating
many process planning functions in LM.

There has also been substantial effort from the computer-aided design community, which is primarily
experimental/heuristic in nature. Representative work here includes that of Frank and Fadel [17] who
consider support optimization in the framework of an expert system, Bablani and Bagchi [4] who were
the first to quantify the notion of stair-step error, Allen and Dutta [2] who give heuristics for minimizing
support contact-area, Bghn [8] who addresses the problem of automatic repair of computer models, and
Kulkarni and Dutta [21] and Dolenc and Makela [14] who consider the problem of slicing with variable
layer thicknesses to capture fine detail in the model. The special issue by Stucki et al. [32], contains a
wealth of information on commercial and university-based work in RP and LM.

1.2. A decomposition-based approach

All the process-planning algorithms for LM that we are aware of work by viewing the model as a
single, monolithic unit. By contrast, the approach that we propose works by decomposing the model
into a small number of pieces, building each piece separately using LM, and then gluing the built pieces
together to obtain the physical prototype. (The number of pieces generated can be controlled by the
user.) Specifically, given a decompaosition direction, we decompose the model by intersecting it with a
suitable plane perpendicular to this direction; we then build the pieces that lie in the same halfspace in
the direction given by the normal to the plane that is contained in the halfspace. Fig. 2 illustrates this (in
2D, for convenience).

The decomposition-based approach has the advantage that it allows the construction of large models
that cannot be accommodated in the workspace as a single piece. Moreover, the model can be built rapidly
by building the pieces in parallel. Speed is particularly important in the “look and feel” prototyping that
is the dominant use of RP today, since the goal here is to quickly get into the hands of the designer a
physical version of the model to assess its general feel and appearance, and to rapidly iterate on the desig
until it is acceptable. In this context, the potential disadvantages of the decomposition-based approach
(i.e., inaccuracies that may result from manually gluing the pieces together and reduced strength across
the glued sections) are offset by the ability to build large models quickly in parallel.

A less obvious, but nevertheless crucial, advantage is that the support requirements of the decompo-
sition-based approach are often much less than those of the conventional appFoachstance, if a
hollow sphere is built the conventional way, supports will be needed in the interior void and below the
lower hemisphere; however, if it is built as two hemispheric shells, in opposite directions, then supports
will be needed only in the regions previously occupied by the void, which results in an overall reduction
in both support volume and contact-area. Our experiments confirm substantial savings for various other

5 They can never be more, since the conventional approach corresponds to the special case where the decomposition plan
coincides with the platform.
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Fig. 2. The decomposition-based approach, shown in 2D for convenience. The polyfedrdacomposed by a plarf into
polyhedraP® andP—, which are then built in the indicated directions.

models as well. Reducing support requirements is important because this translates into lower material
costs and faster build times.

1.3. Contributions

We give the first provably correct and efficient geometric algorithms to decompose polyhedral (i.e.,
STL) models, with respect to a given decomposition direction, so that the support contact-area and,
independently, the support volume is minimized. We formalize this problem in Section 2. In Sections 3
and 4, we consider convex polyhedra and devise efficient, plane-sweep-based algorithms. We show how
to generate expressions for the support volume and contact-area as a function of the height of the sweej
plane, and how to optimize them during the sweep. We discuss our implementation of these algorithms
and the results of our experiments on convex polyhedra with up to 200,000 vertices.

It may be argued (quite reasonably) that real-life models are generally not convex, so the direct
relevance of the above algorithms is somewhat limited. Our original motivation for considering convex
polyhedra was to get a handle on the problem for the non-convex case, which is considerably more
difficult because of the complex structure of the supports (see Fig. 3). Indeed, we will see that our
approach for the convex case is one of the key building blocks to our solution for the non-convex case.
In Section 5, we show how to handle non-convex polyhedra by first identifying certain critical facets
(or parts thereof) using a technique called cylindrical decomposition [29]. It turns out that the problem
can then be solved by applying to these critical facets the algorithm developed for the convex case. We
also give experimental results for typical non-convex polyhedra. Another key problem encountered in the
non-convex case (but not in the convex case) is to keep small the number of pieces in the decomposition.
We give an efficient technique for controlling the size of the decomposition of non-convex polyhedra, so
that the number of pieces generated is within a user-specified limit.

To the best of our knowledge, the only prior work related to this approach is due to Fekete and
Mitchell [16]. They consider the problem of decomposing a polyhedron into special polyhedra called
histograms, which can be built on certain “base” facets with no supports. They prove that deciding if a
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polyhedron of genus zero can be decomposediritistograms is NP-complete (this is true even in two
dimensions for a polygon with holes). Our work differs from [16] in that we seek a decomposition (with
respect to a given direction) into two polyhedra for which the total support requirement is minimized, but
not necessarily zero.

2. Formalizing the problem

We denote byP the polyhedron of interest. We assume the facet® aire triangles and that its
boundary is represented in some standard form, such as, for instance, a doubly-connected edge list [13] o
a winged-edge structure [7]. (If necessary, such a representation can be computed easily from the standar
STL representation oP [27].) Let d be a givendecomposition direction (a unit-vector); we assume,
without lost of generality, thal coincides with the positive direction. LetH be any plane perpendicular
to d and intersecting?; we call H the decomposition plane. Let P* be the closed polyhedron bounded
by the facets ofP (or portions thereof) that are abo¥#, and by the faceP N H. (Note thatP™ may
consist of more than one connected component.) If no pait lids strictly aboveH , thenP is taken
to be empty. Defing>~ symmetrically with respect to the portion &f that is belowH . (FacetP N H
appears in bot* andP~, with outward normals-d andd, respectively.) We define tHild direction
for P* to bed and forP~ to be—d, and we takeH to be theplatform for both polyhedra.

Let f be any facet ofP. We classifyf, with respect to the given decomposition directibras afront
facet, a back facet, or aparallel facet of P depending on whether the angle between the decomposition
directiond and the outward unit-normas,, of f is less than, greater than, or equal t6,9@spectively.

(Note that f may be completely withif®* or P~, or may be partially inP* and partially inP~.
However, since the classification is done with respect to the fixed decomposition direction, rather than
the build directions foP* andP~, f has the same classification and/orP~ as it does irP.)

We now formalize the notion of supports. A facet of a polyhedron will need to be supported iff the
angle between its outer normal and the build direction of the polyhedron is greater thdin@Implies
that the back facets ¢+ and the front facets @~ will need to be supported. For concreteness, consider
a back facetf of P+. Thesupport polyhedron for f is the closure of the set of all poinise R such
that p is not in the interior ofP™ and the ray shot fronp in directiond first entersP* through f.
Informally, the support polyhedron ¢f is bounded from above by, on the sides by vertical facets that

build
direction

H H

Fig. 3. Support structures (in light shading), shown in 2D for convenience. Supports in the non-convex case (left) exhibit
complexities not seen in the convex case (right): (i) they can rest partially on other parts of the polyhedron; (ii) only a fraction
of a facet may be in contact with supports; (iii) parallel facets can also be in contact with supports.
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“drop down” from the edges of, and from below by the platform and/or portions of front facet$dt
(If P* is convex, then it is bounded from below by only the platform.) See Fig. 3 for an example in 2D.
The support contact-area for P* is the total surface area @ that is in contact with supports. It
includes the area of all the back facet§of, exceptP N H, and the areas of those portions of front facets
and parallel facets that are in contact with supports. (FRcetH rests on the platform and hence needs
no supports. Note that while back facets are completely in contact with supports, front and parallel facets
may be only partially in contact.) Treepport volume for P+ is the total volume of the support polyhedra
for all back facetsf of P* (excluding” N H). A symmetric discussion applies to the polyhedin.
We are now ready to state formally the problem that we wish to solve.

Problem 2.1. Given a polyhedrorP, with n vertices, and a decomposition directidncompute a plane
H perpendicular ta which decompose® into polyhedraPt andP~ (as defined above) such that the
total support contact-area or support volume is minimized whéemnd?~ are built in directions! and
—d, respectively. Additionally, if the user specifies an inte@erthen the planed should be optimal
over all planes that generate no more than a tot& @bnnected components Bff andP~.

3. Decomposing a convex polyhedron to minimize contact-area of supports

In this section and in Section 4, we assume fRds convex. ThusP™ andP~ are both convex and
the support polyhedron for a back facet®f, or a front facet ofP—, extends from the facet all the way
to the platform, without intersecting any other facet (Fig. 3). Furthermore, parallel facets will not be in
contact with support&.These properties lead to an efficient algorithm for Problem 2.1, which we then
incorporate into a solution for non-convex polyhedra.

Our approach is based on sweeping the plahepwards starting from they-plane (we assume
without lost of generality, thaP lies above thery-plane). LetH currently be at height above the
xy-plane and letf be any facet ofP. We classify f as an active or an inactive facet with respecHto
depending on whether or ngtis cut by H. Intuitively, an inactive facet is completely containedAry
or P~ and its contribution to the contact-area is not affected by small “local” movemetris G the
other hand, an active facet is contained partiall{Pin and partially in”~, and small movements df
affect the facet’s contribution to the contact-area. Formally, we g£alh active facet with respect to H
if HN f # ¢ and at least one vertex gfis strictly aboveH . Otherwise, we calf aninactive facet with
respect to H.

It follows that if f is an inactive front facet then its contribution to the total contact-areses 1)
if itis in P~, and zero if it is iNP*, wherearea( f) is the area off. If f is an active front facet, then
only the part,f—, of f that lies belowH is in P~, so f contributesarea( f ) to the total contact-area.
Symmetrically, if f is an inactive back facet, then its contribution to the total contact-ara@asf) if
itisin P*, and zero ifitis inP~. If f is an active back facet, then only the p#rt of f that lies above
H isinP*, so f contributesarea( f*) to the total contact-area.

The expression for the total contact-areg?df andP~ consists of two terms: thimactive-area term,
which is the contact-area contributed by the inactive facets, arattive-area term, which is the contact-
area contributed by the active facets. If we m@¥eup or down, without crossing a vertex, then the

6 Indeed, all references to facets in this section and in Section 4 mean non-parallel facets.
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Fig. 4. Intersection o and active front facef .

inactive-area does not change, since inactive facets become active, and vice versa, oty evbsses

a vertex. Therefore, the inactive-area term is simply a real number. However, the active-area changes
because the fraction of an active facet that contributes to the total contact-area chaHgssnasved.

Lemma 3.1 below shows that the active-area term is a quadratic expression in

Lemma 3.1. Let the plane H be at height / above the xy-plane. The total contact-area contributed by
the active facets (i.e., the active-area) is of the form Ah? 4+ Bh + C, where the coefficients A, B, and C
depend only on the coordinates of the vertices of the active facets.

Proof. Let f be any active facet, with verticas = (x;, yi, z;), v; = (xj, yj, 2;), andvg = (X, Yk, 2x)
(Fig. 4). We will prove that the contact-area contributedfbig of the forma ;42 + b¢h + ¢, where the
coefficientsa,, by, andc; depend only on the coordinates of the verticeg oT his implies the result.

Note that by definition of an active facef,is not contained irZ. Without lost of generality, assume
that f is a front facet, that; < z; < zx, and thatH intersectsf betweerv; andv;. (The other cases are
similar and are discussed at the end of the proof.) Henhtersect edgé;v; at v;; = (x;;, yij, z;j) and
edger; vy atv, = (xi, yix, zix). We compute these intersection points as follows.

Let ¢;; and¢;; be the lines containing;v; andv; v, respectively. For real-valued parameteedr,
the equations of these two lines are:

it x=xi+x;—x)t, y=yi+;—ydt, z=2z;+(z; —zt,
and
bi: x=xi+ O —xp)r, y=yi+—ydr, z=2z+ @ —z)r
Sincez;; = z;x = h, the parametersandr are given by
h—Zi h—Zi
= , r= .
Zj — 4% Ik — Zj

Leta; = (x; —xi)/(zj —zi)y o = (e — x1) /(2 — 20), By = (vj — ¥i) /(zj — z1), andBe = (v — ¥1) / (zx —
z;). Then it follows that

Xij =X +aj(h—z), yij =Yi+ Bjh —z)
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and
Xig =x; +ap(h —z;), Yik = Yi + Be(h — z;).

Let £~ be the part off below H; f~ is a triangle with vertices;, v;;, andv;. Then
2-area(f7) = |(v;; — v;) x (Vi — V)|,

Wherev,-j -V, = O(j(h —2z;)i +ﬂj(h —z)J+(h— zpk andv;, —v; = oapth—z)i+Brth—2z,)j+ (h—
z;)k, and| - | denotes the length of the associated vector. Therefore,
i J k
(i —v) X (Vi —v;) = |aj(h—2z) Bj(h—z) (h—2z)
arth—z;)) Peth—zi)) (h—2z)

= (h—z))%(Bj — Bi — (h — z0)%(et; — ) j + (h — z)%(@t; B — uB))k.
It follows that

area(f”) = %(h —2)%((B) — B2+ (@) — )+ (e B — o )?) "

The coefficient ofz — z;)? above is a constant which depends only on the coordinates of the vertices
of f. In fact, it is easy to verify that this constant is equabtea(f)/((z; — z;)(zx — z;)). Hence the
contribution of f to the active-area term is of the formh? + bh + ¢, as claimed.

If z; =z; or if H intersectsf betweenv; and v, then f~ is a quadrilateral andrea(f~) =
area(f) —area(f*), wheref™ is the part off aboveH . Sincef* is a triangle, its area can be written as
a quadratic expression similar to the one above. Moreavesy( ) is a constant. It follows tharea( f )
is of the claimed form. Finally, iff is a back facet, then a symmetric discussion applies.

Summing the area contributions of all active facets gives the lemma.

Remark 3.1. Note that the coefficient in Lemma 3.1 is the sum of coefficients for those active
facets f that contribute triangular areas to the total contact-area minus the sum of coeffigigots
those active facetg that contribute quadrilateral areas to the total contact-area. Therefore, it is possible
that A = 0. Similarly, it is also possible tha& = 0. In fact, the following example shows thatand B

can be zero simultaneously.

Let P be a cube which has been sheared by a small amount in the posdivection. That is, if we
view P from the positivex-axis, then the top and bottom facets are parallel torihplane, the front and
back facets are parallel to the-plane, and the left and right facets are parallel but slanted rightwards.
Let F andG be the left and right facets, respectively. Splitnto trianglesf and /" andG into triangles
g andg’. Let f be the triangle ofF with one vertex at the bottom and two at the top, an¢;lée the
similar triangle ofG. Note thatarea(f) = area(g), and, with respect to the positivcedecomposition
direction, f is a front facet ang is a back facet. Let;, z;, andz; (= z;) be thez-coordinates of the
bottom, middle, and top vertices ¢gf(andg).

Let H be anywhere between andz;. Then f’s contribution to the contact-area is a triangle whose
area is(h — z,-)zarea(f)/((zj — zi)(zx — zi)), and g’s contribution is a quadrilateral whose area is
area(g) — (h — z,-)zarea(g)/((zj — z;)(zx — z:)). Therefore, the total contribution gf andg is simply
area(g). A symmetric discussion shows that the total contributiorf’adindg’ is area( f”). It follows that
the total contact-area @ for this position ofH is a constant equal &rea(g) +area(f’),i.e.,A= B =0.
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In the algorithm to follow, we will need to optimize the active-area formula over a certain rarige of
for which it is valid. We will show there how to handle these special cases.

3.1. Thealgorithm

We sweep the plan# upwards, starting at the lowest vertex/f We stop at each vertex and update
the inactive-area and the active-area terms, based on the facets incident to the current vertex. We ther
minimize the active-area term (hence the total contact-area) as the poaitiohH ranges between
the z-coordinates of the current vertex and the next one. This gives the optimal positiéhldetween
successive vertices. We repeat this for all vertices to find the globally-best positiéh for

Here is the algorithm in more detail:

e In a preprocessing step, we sort the vertice® afccording to non-decreasingcoordinates, as;,

v, ..., v, (ties are broken arbitrarily). For each facgk P, we determine whether it is a front, a

back, or a parallel facet, and also compatea( /). We set the active-area term identically equal to

zero and the inactive-area term equal to the total area of the back facets. We set the current minimum
contact-area equal to the sum of these two terms. We then scan the vertices in their sorted order.
e Letv, be the current vertex, & ¢ < n. For each facef incident tov,, we do the following:

Case1: v, is the lowest vertex of f. (Thus, f changes from inactive to active at.) If f is a
back facet, then we subtraatea( /) from the inactive-area term. Using Lemma 3.1, we
compute and add the expressiofh? + b :h + ¢, to the active-area term, thereby including
the contribution off* to the total contact-area wheii is betweenz, andz,,;. If f is a
front facet, then we update only the active-area term to include the contributitn wfthe
total contact-area.

Case 2: v, isthe highest vertex of f. (Thus, f changes from active to inactive at.) This case is
symmetric to Case 1. That is, ff is a back facet then we use Lemma 3.1 to compute and
subtract the expressiaryh? + b,h + ¢, from the active-area term, thereby removing the
contribution of f to the total contact-area whdi is betweernz, andz, 1. If f is a front
facet, then we update the active area term to remove the contributign,odnd we add
area( f) to the inactive-area term.

Case 3: vy isthe middle vertex of f. Here f continues to be active, but the active-area term must be
updated sincéd intersects a different edge gfabovev, than it did below. We perform this
update using Lemma 3.1.

After one of the three cases above is executed for all fateéteident tov,, we have a new active-

area termAh? + Bh + C, which is valid fork in the interval[z,, z,11]. We can minimize this term

using standard techniques from calculusAlf£ 0, then the minimum is attained at= — B/2A if

—B/2A € [z4, z¢41], and ath = z, or ath = z,1 otherwise. IfA = 0 andB # 0, then the minimum

is attained at eithet =z, or ath = zy,1. If A= B =0, then the active-area is constan{ig, z,,1],

so we (arbitrarily) pick:;, as the “optimum” value ok. In any case, once the optimuihas been de-

termined, we compute the total contact-area for thésid update the current minimum contact-area,

if necessary.

Theorem 3.1. The contact-area version of Problem 2.1 can be solved in O(n logn) time for a convex
polyhedron P with n vertices (O(n) time if the vertices are given in sorted order in the decomposition
direction d).
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Proof. The correctness of the algorithm follows from the earlier discussion. The initialization time is
dominated by the Gr logn) time to sort the vertices. At each vertex the incident faces can be accessed
in constant time apiece, sin@is given as a doubly-connected edge list. The time to update the active-
area and inactive-area terms is proportional to the degrag.dfhe minimization of the active-area
term takes constant time. Summing over all vertices, the sweep tim@ jssibce the sum of the vertex
degrees irP is O(n). The claimed time bound follows. O

3.2. Experimental results

We have implemented the above algorithm and tested it on several convex polyhedra. The program is
written in C++, and performs floating point computations in double-precision. The tests were done on a
SUN Ultra 10 Sparc machine with 256 MB of main memory and a 440 MHz processor.

We generated two classes of test polyhedra. For the first class, we generated for aawdt ofn
points at random on a sphere of radius 100 centered at the origin. (In our experimeamged from
20,000 to 200,000, in steps of 20,000.) We then computed the convex hull ofrthmsats using the
ghul | program [10], and used it as our test polyhedron. (Since: fh@nts were in convex position, all
of them appeared on the convex hull. Also, we set the parametetsutiol such that it did not merge
coplanar facets; thus all facets were triangles.) Table 1 shows the running times of our program and the
minimum contact-area computed. To illustrate the savings realized by decomposition, we also computed
the contact-area without decomposition in each case.

Table 1

Minimum support contact-area for convex polyhedra generated from random
points on a sphere of radius 100. Here “non-decomp. contact-area” refers to
the support contact-area when the polyhedra are built without decomposi-
tion; observe the significant reductions achieved via decomposition. Note
that the support contact-area without decomposition is roughly equal to the
area of the lower hemisphere, as it should be

Support contact-area

#verts min hmin run time non-decomp.
n contact-area (s) contact-area
20,000 579.0 -0.14 0.6 62,708.1
40,000 424.2 0.04 1.2 62,832.6
60,000 338.6 —0.04 2.0 62,803.7
80,000 286.6 —0.05 2.7 62,802.5
100,000 274.6 0.02 35 62,840.0
120,000 243.6 0.05 4.2 62,864.0
140,000 226.4 0 5.0 62,824.7
160,000 211.6 -0.01 5.8 62,833.2
180,000 191.2 0.03 6.5 62,845.1

200,000 174.7 —0.02 7.4 62,814.9
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Table 2

Minimum support contact-area for convex polyhedra generated from random points on a
cone; each polyhedron has been rotated by the indicated angle to make it non-symmetric
about the origin. Here “non-decomp. contact-area” refers to the support contact-area
when the polyhedra are built without decomposition; observe the significant reductions
achieved via decomposition

Support contact-area

#verts angle min hmin mean run non-decomp.
n contact-area time (s) contact-area

20,001 200 77526 -32 0.6 55,300.5
37 117050 23 57,111.7
40,001 40 121931 27 1.3 58,304.3
75 39737 0.7 52,005.6
60,001 240 /0378 -0.5 2.0 55,082.1
112 53155 -05 55,068.2
80,001 80 27145 0 2.8 52,272.1
150 101085 -15 51,825.6
10,0001 280 5491 0 3.6 52,160.8
187 344738 -36 59,820.0
120,001 120 0184 -0.2 4.3 55,068.5
225 119081 -1.0 49,168.8
140,001 320 12097 12 5.1 58,237.1
263 19670 01 54,011.3
160,001 160 /B57.2 -21 5.9 55,325.7
300 69626 0.2 51,425.1
180,001 0 D 17 6.7 44,798.2
338 81757 15 51,938.3
200,001 200 6258 -21 7.5 55,297.5
15 61982 34 49,509.5

As one might expect, the test polyhedra generated above were quite symmetric about the origin. As a
result, the optimum decomposition plane was always close toyth@ane. Therefore, we also generated
a second set of polyhedra that did not exhibit such symmetry. For this, wejbsgd to generate: + 1
points at random on a cone whose major axis was along-tods, forn in the range 20,000-200,000
(the additional point was the apex of the cone). We then rotated the cone by a randomly chosen angle to
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make it non-symmetric about the origin. For eaglwe generated two non-symmetric test polyhedra in

this fashion. Table 2 shows our results; here “angle” refers to the angle by which the cone was rotated.

For each input size, the running times on the two polyhedra were nearly the same; therefore, we averagec
the times. This closeness in run times is to be expected since the complexity of the algorithm depends
primarily on the graph structure &, which is the same regardless of orientation. In fact, since the graph

is fully triangulated, the number of edges and faces are the same for different polyhedra with the same

number of vertices. This is borne out by Tables 1 and 2.

3.3. Discussion

One might wonder if there is always an optimal solution where the plarmmasses through a vertex
of P, thus obviating the need to minimize the active-area formula in between successive vertices. In this
section, we show that this is not the case by proving that for the pyréwtiFig. 5 the optimal plane

does not contain any vertex.
In what follows, we will use the notatiofy;, v;, v) to denote a facet (triangle) @ that is bounded

by verticesv;, v;, andu.
It is easy to verify that

2-area((v, va, v2)) = |(v3 — v1) x (V2 — v1)| = VB,
2. area(<vl7 V2, v4>) = |(v4 - vl) X (vz — v1)| = «/é’

2 area((vz, v3, va)) = | (V3 — V2) X (V4 — V)| = V8.

Note that facetvy, vs, v4) is a parallel facet for the indicated decomposition directélpand, therefore,

does not contribute to the contact-area.
We now compute the total contact-area ot and’P~ for each decomposition plang that passes

through a vertex of.

Fig. 5. A polyhedron for which the decomposition plane realizing the minimum contact-area does not pass through a vertex.
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Casel. H passesthrough vy, i.e, H istheplane z = —1.
In this case,P~ is empty and the (active) back facgts,, vs, vo) and (vq, vy, v4) contribute
area((vy, vs, vp)) andarea((vy, v2, v4)), respectively, to the contact-area fBr. Therefore, the
total contact-area i§/6/2 + /6/2 = 2.449.

Case 2. H passesthrough vy, i.e., H istheplane z = 0.
Let H intersect edgedivz and vivz at points vz and vy4, respectively. We have s =
(0.5,0,0) andvi4 = (—0.5,0,0). There are no facets that contribute to the contact-area for
P~. The (active) back facets$vq, v3, vo) and (vi, vy, v4) contribute area({v,, v13, v3)) and
area((v,, v4, v14)), respectively, to the contact-area f8r. We have

2. area((vz, vi3, v3)) = | (V13— v2) x (v3— v2)| = V15,
2 area((vz, va, v14)) = |(V14— v2) X (V4 — v2)| = V15.

Therefore, the total contact-areavd.5/2 + v/1.5/2 = 1.225.

Case 3. H passes through vz (and vy4), i.e., H istheplanez = 1.
HereP* is empty. Only the (inactive) front facét,, vs, v4) contributes to the contact-area for
P~ Its contribution isarea((v,, vs, v4)) = v/2 = 1.414, which is also the total contact-area.

Now, let H be the plane = 0.5. This plane does not pass through any verteR oiVe will show that
the total contact-area for this plane is smaller than any of the contact-areas computed in Cases 1-3 above
Let H intersect edgesivz, v1v4, U2v3, andvovg at pointsvss, via, V3, anduvy,, respectively. We have
V13 = (0.75, 0, 05), V14 = (—0.75, 0, 05), Up3z = (05, —0.5, 05), andv24 = (—0.5, —0.5, 05)
Facet(v,, v3, v4) is a (active) front facet and contributesea((v,, v23, v24)) to the contact-area for
P~. Facets(vy, v3, v2) and(v1, vp, v4) are (active) back facets, and contrib@ea((vos, v13, v3)) and
area((v14, v4, V24)), respectively, to the contact-area fBr. We have

2 area((vz, vas, v24)) = (V23 — v2) X (Voa— V)| =

2 area((vzs, v13, v3)) = (V23 — v3) X (V13— v3)| =

i ol

2 area((vi4, va, v24)) = (V14— V4) X (Voa— vg)| =

Thus, the total contact-area(i$/2)1/+/2 + (1/2)v/1.5/4 + (1/2)+/1.5/4 = 0.660, which is less than
any of the contact-areas computed in Cases 1-3. This proves that the decomposition plane that realize
the minimum contact-area need not pass through any vertgx kfturns out that, for this example, the
optimal plane isH: z = 0.46, and the corresponding total contact-area6&6. (This was computed by
our program in Section 3.2.)

4. Decomposing a convex polyhedron to minimize volume of supports

In this section, we describe an algorithm to decompBssuch that when the resulting polyhedra
Pt and P~ are built in directionsd and —d, respectively, the total volume of supports is minimized.
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Each support polyhedron f@®* is bounded from above by a back facet, on the sides by vertical edges
emanating from the edges of the facet, and from below by the decomposition flahesymmetric
discussion applies fagP—.

For any given decomposition plarté: z = h, the expression for the support volume consists of two
terms. Thenactive-volume term and theactive-volume term, which are, respectively, the total volumes
of the support polyhedra contributed by the inactive and the active facets. If we Bhaye or down
without crossing a vertex, the active-volume as well as the inactive-volume changes (unlike contact-area,
where only the active-area changes). Lemma 4.1 below proves that the active-volume term is kubic in
and Lemma 4.2 shows that the inactive-volume is linedr. in

Lemma 4.1. Let the plane H be at height # above the xy-plane. The total support volume contributed
by the active facets (i.e., the active-volume) is of the form Ah® + Bh? + Ch + D, where the coefficients
A, B, C, and D depend only on the coordinates of the vertices of the active facets.

Proof. Let f be any active facet, with verticas = (x;, i, zi), v; = (xj, yj, 2;), andvg = (Xx, Yk, ),
wherez; < z;, z; < zx and let the vertices;, v;, and v, be in counterclockwise order when viewed
from the outside ofP (i.e., (v; — v;) x (vx — v;) has the same direction as the outward unit-normal,
ns, to f). Clearly, it suffices to prove that the support volume contributedfbys of the form
ash®+ brh? + cyh + dy, where the coefficients;, by, ¢;, andd,; depend only on the coordinates
of the vertices off .

Note that, by definition of an active facef,is not contained inif. Assume thatH intersects edges
v;v; and v;vg, so thatf~ is a triangle andf ™ is a quadrilateral. (The other cases are similar and are
discussed at the end of the proof.)flfis a front facet, then it contributes a support polyhedron only to
P~, whereas iff is a back facet, then it contributes a support polyhedron ony'toLet us denote this
support polyhedron bg . Letv;, v}, andv;, be the vertical projections af, v;, andyy, respectively, on
H.If fisafrontfacet, theR is defined by the vertices, v;, v;;, andvy (Fig. 6); if f is a back facet,
thenR is defined by the vertices;, vi, v}, vy, v;, andug (Fig. 7). Our goal is to find a formula for the
volume,vol(Ry), of R, in each case.

LetS;, 1< j <r bethe facets oR,, for some positive integer. Let N ; be the outward unit-normal
to §; (“foutward” with respect tak s, notP). Let O ; be any point orf; and let@Q ; be the position vector
of Q;. From [18] we have

VO|(Rf) =

1
3 Y (Q; - Nparea(s))|. (1)
J

We next consider the two possibilities fgrseparately.

Case 1. f isafront facet of P (Fig. 6).
In this caseR; is bounded by the following facets:

S1t (vi, vij, v))
So=f"1 (vi, vix, vij)
Szt (v, V), vik)
Sar (v, Vij, Vik)
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Fig. 6. The support polyhedrom ;, contributed by an active front fac¢t R ; is defined by the vertices, ”z/" v;j, andvj.

Table 3
Facet PoinQ; Normal N ;
S1 v; (wj—v;) xd/|(vj —v;) xd|
So v; —ny
S3 v; d x (vp —v;)/ld x (vg — v;)]
Sa v d

Table 3 showsV; and the pointQ; for each facetS;. We have choser@; such that subsequent
calculations become simple.

Note that all the dot product@; - N;, except for@, - N4, depend only ory' (andd, which is fixed);
the dot productQ, - N4 = h. We now generate an expression for ead(S;).

Expression for area(S:):
Consider the vertical projectiony’, of v; on the plane passing through and parallel toH .’
FacetS: is simply the triangular portion ofv;, v;, v/) lying below H. From the proof of
Lemma 3.1

_ area((v;, v;, v}"))
(Zj - Zi)(Zj - Zi)’

area(Sy) = (h — z;)*

7 To avoid clutter, we do not show/" in Fig. 6.
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wherearea((v;, vj, v)) = [(v; —v;) x (v{ —v;)|/2, andv — v; has component®, 0, z; — z;).
It follows thatarea(S1) can be written in the form

area(Sy) = a'Ph? + bV + P, @
for some coefficienta’”, 5, andc!" that depend only on the coordinates of the verticeg of
Expression for area(S,):
From the proof of Lemma 3.1 it is immediate that
area(S) = a'Ph? + b7+ P, (3)

for some coefficienta’?, 5, andc?’ that depend only on the coordinates of the verticeg of

Expression for area(Ss):
The discussion here is identical to the onedisa(S;), except that we use the vertical projection,
v!”, of v; on the plane passing through and parallel toH . Therefore,

)2 area((v;, v, v;"))
Vo@— )@ —z)
wherearea((v;, vg, v")) = |(vx — v;) x (v} — v;)|/2, andv!” — v; = (0,0, zx — z;). It follows

thatarea(S3) can be written in the form
area(Ss) =a W h? + b 0n + P, 4)

area(Sz) = (h —

for some coefficienta’”, 5, andc? that depend only on the coordinates of the vertices.of

Expression for area(S,):
Now, area(S,) is simply the area of the projection ¢f~ on H, and is hence equal &rea( f )
times the cosine of the angle betweBnand the plane containing—. Therefore,area(S;) =
area(f ") (ny - d).
Recall from the proof of Lemma 3.1 thatea( f ) is quadratic im. It follows thatarea(S,) can
be written in the form

area(Sy) =ay h?> + b0 + P, )

for some coefficienta’”, 5, andc"” that depend only on the coordinates of the verticeg of

Let us denote byctive-volume (k) the support volume contributed by an active fagewith respect
to the planeH: z = h. From Egs. (2)—(5) and the fact thé, - N, = i, we have

4
_ 1 . . .
active-volume  (h) = 3 > Q- Ny(aPn?+ 6P n+cY)
j=1
1 3
D2, 1Dy 4 D @2 @, @
=3 Q- N)(aPr?+ b7 h+ 7))+ h(afPh? + b+ )
=1
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Fig. 7. The support polyhedroiR ¢, contributed by an active back facét R, is defined by the vertices;, vy, v;j, vi, v},
andv, .
k

1
Z 0}4)]/13 (b(4)+Z(Q .N.: ) (]))hZ

j=1

( (4)+Z(Q .N.: )b(])>h+Z(Q "N )C(J)

j=1 j=1

Therefore,
active-volume (h) = a;h®+beh? 4 cch + dy, (6)
for some coefficientas, b, ¢, andd that depend only on the coordinates of the verticeg.of

Case 2. f isa back facet of P (Fig. 7).
In this caseR is bounded by the following facets:

S (iks vg, k)
So=f*r (vik, vk, vy, vij)

S30 (v, vj, ])

Sa. (v],vk,vk,vj)

S5: (Uljv Uja Uk, vik)

Table 4 showsV ; and the pointQ ; for each faces;. Again, we have chose@ ; such that subsequent
calculations become simple.

Note that all the dot product@ ; - N ;, except forQs - N5, depend only ory (andd, which is fixed);
the dot productQs - N5 = —h. We now generate an expression for eada(s;).
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Table 4
Facet Point; Normal N ;
S1 Uk d x (v; —vp)/1d x (v; —vg)|
So Vg —ny
S3 vj dx@j—v)/ldx (vj—v;)l
Sa vj dx (vg—v;)/ld x (v —v;)]
S5 vl/( —d

Expression for area(Sy):

Consider the vertical projectiony, of v, on the plane passing through and parallel toH .8
Facet S, is simply the triangular portion ofv;, v, v;) lying above H. From the proof of
Lemma 3.1

2 area(<vi7 Uk, v]f))
— )" ,
(zi — 2@ — z1)
wherearea((v;, vk, vy)) = [(v; — vx) x (v} —vi)|/2, andv] — v, has component&, 0, z; — z).
It follows thatarea(S1) can be written in the form

area(s1) = (h

area(S) = ay h? +bPh + )
for some coefficients'”, 5, andc? that depend only on the coordinates of the vertices &f

Expression for area(ss):

From the proof of Lemma 3.1 it is immediate that

area(Sp) = aPh?+ bPh + ¢, ®)
for some coefficienta’?, 5, andc?’ that depend only on the coordinates of the verticeg of

Expression for area(Ss):

The discussion is identical to the one abovedi@a(S), except that we use the projectiof of
v; on the plane passing throughand parallel to . Therefore,

area({v;, v, v}))

(zi — Zj)(Zi - Zj)’
wherearea((v;, v;, v;./)) =[(v; —v;) X (v/j’ -v;)|/2, andv/j’ —v; has component®, 0, z; — z;).
It follows thatarea(S3) can be written in the form

area(Ss) = (h — z;)°

area(Ss) = aPh? + bPh + ¢, 9)
for some coefficienta’”, 5, andc” that depend only on the coordinates of the verticeg of

8 Again, to avoid clutter, we do not shovf(/ in Fig. 7.
9 These coefficients are, of course, different from the ones we use in Case 1.
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Expression for area(Ss): -
FacetS, is a trapezoid with parallel sidegv; andv;v’, of lengthsz, — i andz; — i, respectively,
and heightv/v;| = ((x; — x)%+ (y; — y0)»*2 Therefore,

— . |U/~U/| / Zidz
area(Ss) = (Jucvy| + [v,7) - =57 = =[vjuilh + [ =5
It follows thatarea(S4) can be written in the form

4

wherea'? 7 =0,andb;, andc(4) depend only on the coordinates of the verticeg of

Expression for area(Ss):
Let /i be the vertical projection of on the planef, with verticesv;, v, andv;, corresponding
to v;, v;, andu, respectively. (Note that;; andv;, get projected to themselves.) Then

area(Ss) = area( fx) — area((v;, vi;, vix)).

Now area((v;, v;j, vir)) has already been computed in Case 1 (Eq. (5)). Moreaveay f) =
(v —v) x (v —v;)) - d)/2.

Since the former is quadratic inand the latter is a constant, it follows tremea(Ss) is quadratic
in . Thus,

area(Ss) = a'Ph? + b7 + ¢, (11)
for some coefficienta”, 5, andc? that depend only on the coordinates of the vertices.of
From Egs. (7)—(11) and the fact th@; - N5 = —h, we have

. 1
active-volume, (h) = 3 Z(QJ N)(@Pn?+5n+ )
j=1
1] . . .
=3 > (Q; Np(@Pn?+ 6P h+ ) —h(@Ph? +5Ph + D)
j=1

=

=3 —a}5)h3+( b(5)+Z(QJ Nj)a (’))hz
+( (5)+Z(Q .N.: )b(])>h+Z(Q .N.: )C(j)

j=1 j=1

Therefore,
active-volume(h) = ah®+bph? 4 c;h + dy, (12)

for some coefficienta, b, ¢, andd that depend only on the coordinates of the verticeg.of
The lemma now follows if we sum the active-volume contributions of all front and back facets,
using Egs. (6) and (12), respectively.
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We now discuss how to handle the other cases mentioned at the beginning of the prddf. Let
intersectf such thatf~ is a quadrilateral ang'* is a triangle. If f/ is a back facet, then we
can use the discussion from Case 1 to compute the active-volume. Suppase-thatz; > z,

and the vertices;, v;, andv, are in counterclockwise order with respectita. All the formulas

for the facet areas still apply. However, the directions of the normNalsnust now be reversed
(except forN,). Also, now @, - N, = —h, and therefore the coefficients afea(S,;) in the
active-volume formula must be taken with opposite signs.

If f is a front facet we use the discussion from Case 2 to compute the active-volume. Again,
suppose that; > z;, z; > z, and the vertices;, v;, andy, are given in counterclockwise order
with respect taz ». All the formulas for the facet areas still apply. However, the directions of the
normalsN ; must now be reversed (except fd). Also, now Qs - N5 = h, and therefore the
coefficients ofarea(Ss) in the active-volume formula must be taken with opposite sigrs.

Next we obtain an expression for the inactive-volume.
Lemma 4.2. Let the plane H be at height # above the xy-plane. The total support volume contributed
by the inactive facets (i.e., the inactive-volume) is of the form Ch + D, where the coefficients C and D

depend only on the coordinates of the vertices of the inactive facets.

Proof. Let f be any inactive back facet with vertices = (x;, y;, z;), v; = (x;,y;,2;), and vy, =
(xx, yk» 2k), Wherez; < z; < zx; see Fig. 8. (The other cases are similar and discussed at the end of

xr

Fig. 8. The support polyhedrofi;y = T;O”Stu T}’af contributed by an inactive back facgt T;O”Stis defined by the vertices

1 v var ; 1 . / ! ! v 1
- andvk. Tf is defined byv;, Vjs Vs Vs U7, andvk.

Vi, Vi, Uk, VU
i Vj, Uk j j
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the proof.) We will prove that the support volume contributedfbis of the formc ;i 4 d; where the
coefficientsc; andd; depend only on the coordinates of the verticeg of his implies the result.

Since f is an inactive back facet it will contribute to the support volume onli ifs below f. Let v
andv, be the projections of; andv,, respectively, on the plane passing througland parallel toH .
Letv;, v;., andv;, be the projections of;, v;, v, respectively, orH. We would like to find a formula for
the volume of the polyhedrorTs, defined by the vertices, v;, v, v;, v} andu;.

T, consists of two polyhedra. The first, denotgé nst is defined byw;, vj, Uk, v;.’, andv/, and the
second, denoteﬂ}’a’, is defined by, v;, v;., v v}’, andv;. As long asH is below f (i.e., f is inactive),
the volume ofT;O”S‘does not change whel is moved. The vqume(oI(T;"”S*), of T]‘EO"Stcan, in fact,
be computed using Eq. (12) in Lemma 4.1, evaluatdd-at;.

The polyhedrorfT}’ar is a prism with basduv;, v/, v;.’), and heightz; — k. The vqume,voI(T}’a’), of
T;* can be computed as

vol(T}") = area((v;, vy, v})) - (zi — h),

wherearea((v;, vy, v})) is just the area of the vertical projection gfonto the plane = z;, and depends
only on the coordinates of the vertices 6f (It can also be computed using Eq. (11) in Lemma 4.1,
evaluated ak = z;.)

Let us denote bynactive-volume,(h) the support volume contributed by an inactive fagetwith
respect to the plan#: z =h. Then

Table 5

Minimum support volume for convex polyhedra generated from random

points on a sphere of radius 100. Here “non-decomp. volume” refers to
the support volume when the polyhedra are built without decomposition;

observe the significant reductions achieved via decomposition. Note that
the support volume without decomposition is roughly equal to the volume

under the lower hemisphere, as it should be

Support volume

#verts min Amin run time non-decomp.
n volume (s) volume
20,000 2.7 -0.17 41 1,046,037.3
40,000 1.0 2 82 1,047,241.1
60,000 0.6 —0.08 126 1,047,256.4
80,000 0.3 —0.04 167 1,047,234.3
100,000 0.3 0 20 1,047,201.5
120,000 0.2 ®3 255 1,047,197.6
140,000 0.2 —0.02 297 1,047,167.5
160,000 0.1 0 34 1,047,192.4
180,000 0.1 m2 379 1,047,188.5

200,000 0.1 —0.03 432 1,047,200.0




Table 6

Minimum support volume for convex polyhedra generated from random points on a
cone; each polyhedron has been rotated by the indicated angle to make it non-symmetric
about the origin. Here “non-decomp. volume” refers to the support volume when the
polyhedra are built without decomposition; observe the significant reductions achieved
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via decomposition

Support volume

#verts angle min Amin mean run non-decomp.
n volume time (s) volume
20,001 200 1M995 -211 4.2 9650394
37 263891 215 1,107,3839
40,001 40 240039 212 8.6 9475916
75 36312 —4.4 9944520
60,001 240 15006 —-4.1 127 8155188
112 81186 24 8654328
80,001 80 13592 —4.2 173 1,014,386.0
150 202498 —24.6 8874351
100,001 280 13493 —4.2 215 1,014 4327
187 10685 -10.7 10337113
120,001 120 18923 —-4.1 258 8151714
225 137848 —19.8 7671978
140,001 320 228329 214 303 9480131
263 5490 32 9592992
160,001 160 17601 -212 347 9629838
300 129089 4.0 8492117
180,001 0 0 irg 395 2,1287985
338 143563 212 17544833
200,001 200 10497 212 436 9623909
15 6,736.2 172 19523438

inactive-volume (h)

for some coefficients ; andd s that depend only on the coordinates of the verticeg.of

vol (T}/ar) + vol (T;onsl)
area([v;. vf. vf)) - (z; — ) +vol (75°)
= crh+dy,

139

(13)
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Finally, if f is a front facet, then a symmetric discussion applies.
The lemma follows by summing the volume contributions of all inactive facets using Eq. (B).

4.1. Thealgorithm

The algorithm is similar to the one in Section 3.1. We sweep the gthopwards, visiting the vertices
in sorted order and at each vertex update the active-volume and inactive-volume terms based on the
facets incident to the current vertex. The three cases outlined in the algorithm in Section 3.1 hold here
as well, except that all references to the active-area and inactive-area terms are now to the active-volume
and inactive-volume terms, respectively. At each vertex we minimize the sum of the active-volume and
inactive-volume terms (hence the total support volume) as the poskioof, H ranges between the
z-coordinates of the current vertex and the next one. This gives the optimal positidh between
successive vertices. We repeat this for all vertices to find the globally-best positiéh for

Theorem 4.1. The support volume version of Problem 2.1 can be solved in O(n logn) time for a convex
polyhedron P with n vertices (O(n) time if the vertices are given in sorted order in the decomposition
direction d).

Proof. Similar to the proof of Theorem 3.1.0
4.2. Experimental results

We have also implemented the above support volume minimization algorithm. The details of the
implementation and the test polyhedra are the same as in Section 3.2. Tables 5 and 6 summarize ou
results.

5. Decomposing non-convex polyhedra

We assume hereafter thBtis a non-convex polyhedron. Such polyhedra pose problems that are not
encountered in the convex case. First, unlike the convex case, supports need not extend all the way tc
the platform, but instead may terminate at some other point on the polyhedron itself. Furthermore, it is
possible that only part of a facet is in contact with supports, unlike the convex case where either the
entire facet or no part of it is in contact with supports. Finally, it is possible that parallel facets are also in
contact with supports, either fully or partially. Fortunately, despite these problems, it is possible to handle
a non-convex polyhedron in a fashion similar to the convex case, after doing some initial processing on
it.

For now, we ignore the issue of controlling the number of pieces in the decomposition; we discuss this
in Section 5.7. Furthermore, for concreteness, we focus on the contact-area version of Problem 2.1. (In
fact, the volume problem is easier, because parallel facets do not contribute to support volume — as they
do to contact-area — and, therefore, can be essentially ignored.)
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5.1. Overview of approach

The main idea is to partition each front or back facefointo two classes of triangles, called black
and gray triangles. (One of these classes may be empty.) A black triamgliealways be completely
in contact with supports, regardless of the position of the decomposition fatieerefore, it always
contributes a fixed amounérea(t), to the total contact-area and so can be ignored for minimization
purposes. However, a gray trianglewill contribute anywhere between zero aadka(r) to the total
contact-area, depending on the positiorgfand so needs to be accounted for.

Parallel facets are treated a little differently. A parallel facefPofs partitioned into three classes
of triangles, called black, gray, and white. (Up to two of these classes may be empty.) Black and gray
triangles have the same interpretation as above. A white triangle will never be in contact with supports,
regardless of the position &, and so can be ignored for minimization purposes.

From the above discussion it is clear that only gray facets are relevant to the minimization problem.
As we will see, these can be handled using the approach in Section 3.

5.2. Black, gray, and white triangles

We next define formally the different types of triangles and establish their stated properties.

Let f be a front facet. Imagine that we buiR, without decomposition, in directiod. Consider the
supports (if any) that are in contact with Their footprint on f, i.e., their intersection withy, is a
collection of polygons, which we will cablack polygons. We triangulate the black polygons ¢fto
obtain the setB, of black triangles associated withyf'. Let p be any point in some black triangle. Since
p is in contact with supports for build directiaf, the rayr,, emanating fronp in this direction must
intersectP. If p’ is the first intersection of, and P — not countingp — then the segmeni’p is the
support forp’. (Informally, p is in contact with supports because some parPoi.e., p’, is directly
abovep in directiond.) The complement of the black polygons gnis a collection ofgray polygons,
and the setG ;, of gray triangles associated witty is obtained by triangulating the gray polygons. No
point in a gray triangle is in contact with supports for build directthn

Now, suppose that we buil®® with decomposition. Let be a black triangle irB ;. Assume that the
decomposition planél intersects, and letz— ands* be the parts of above and belowH , respectively.
That is,r~ € P~ andt™ € P*. Now, all of 7~ will require support since it belongs to the front fagat
and P~ is built in direction—d. The polyhedrorP* is built in directiond, and, furthermore, the part
of P+ that is directly above™ is the same as the part &f that would be directly above" if P were
built without decomposition in directiod. Sincer is a black triangle;™ is in contact with supports for
directiond in the case without decompaosition, and, hence, also in the case with decomposition. Thus, all
of ¢ is in contact with supports.

If H is completely above, then:* =@ andt~ =¢; if H is completely below, then:~ = ¢ and
t* =rt. In either case, the above argument still applies. It follows that regardless of the posifibrifof
t is a black triangle, then all of it is in contact with supports. Thus, black triangles may be ignored.

On the other hand, suppose thas a gray triangle inG s, where f is a front facet. Assume tha{
intersects. As in the case of a black triangle, the parte P~ will be in contact with supports. Consider
the part:™ € P*, which is built in directiond. No part ofs* will be in contact with supports, since in
the case wher® is built in directiond, without decompaosition, no part ofis in contact with supports.
If H is completely below or completely abovethen eithers is not in contact with supports at all or
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is completely in contact with supports. Therefore, it follows tHatcontribution to the total contact-
area depends on the position Hf. In fact, this contribution is exactly the same as for a front facet in
the convex case. That is, ifis inactive, then its contribution is zero area(r); if r is active, then its
contribution is a quadratic function of the positidn,of H, as in Section 3.

So far, we have considered the case where the fAeeP is a front facet. Iff is a back facet of?
then we define the black and gray trianglesfohy building P, without decomposition, in directiond.

Then a discussion symmetric to the one above again shows that, in the case with decomposition, only
gray triangles need be considered.

Finally, we turn to the case wheykis a parallel facet. Suppose that we buidvithout decomposition
in directiond, and, independently, in directiond. The black polygons consist of all points ory that
are in contact with supports for both directions. Tgnay polygons consist of all points ory that are in
contact with supports for exactly one of the two directions. Whée polygons consist of all points on
f that are not in contact with supports for either of the two directions. By definition, these polygons
partition f. The setB, (respectivelyG y, W) of black (respectively gray, white) triangles ofi is
obtained by triangulating the black (respectivgipy, white) polygons.

Now suppose that we buil@® with decomposition. It is easy to see that regardless of the position
of the decomposition plan#, a black triangle will always be in contact with supports, while a white
triangle will never be in contact with supports. Therefore, both these types of triangles may be ignored.
However, a gray triangle will contribute to the contact-area an amount which depends on the position of
H. For instance, let € G be a gray triangle which exists becaugeés in contact with supports when
P is built, without decomposition, in directiadh. Then, in the case with decompositiaf, is in contact
with supports and~ is not. So the contribution afto the total contact-area varies quadratically with the
position, &, of H, from zero toarea(r). So, again only gray triangles need to be considered.

5.3. Computing black and gray triangles for front and back facets

We discuss how to to compute the footprint of the supports on each front facet, hence the black and
gray triangles on it.

We will use a technique calledylindrical decomposition [29]. From each edgez, of each back
facet, b, we erect a stripV, ,, which passes exactly throughand extends vertically downwards, in
direction —d. As soon as a part df, ; intersects another facet @f (which must be a front facet), we
stop propagating that part below the intersected facet; however, we continue propagating the remaining
parts ofV, ,.1% Each such intersection af, , with a front facet will be a part of the footprints that we are
trying to compute.

To perform this step efficiently, we compute the intersection of each front facetWyjtlto get a
set, L, of line segments. (Since the facets@fdo not intersect each other, the segments iare non-
crossing, but possibly touching.) We do a trapezoidal decomposition [13].ofe} in the plane ofV, ;.

We identify each trapezoid in this decompaosition that is adjacentabthe top and to a line segment
¢ € L at the bottom. The bottom edge of this trapezoid is one of the sought intersectidps with a
front facet. We store this edge with the front facet that generated

However, not all footprints on front facets will be discovered by the above process. For instance, if the
projection ofb completely covers a front facef,, below it, then none of the strips, , erected fromb

10 The process resembles water cascading down fom
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will intersect f, and, yet, supports fas will rest on f. To handle such situations, we also erect from
each edgeg, of each front facetf, a stripV, ; vertically upwards, stopping the propagation of any part

of the strip as soon as it intersects a (back) facet above it, while continuing to propagate other parts. To
compute these intersections we do a trapezoidal decomposition of the.sgt}, whereL’ contains the
intersections of all the back facets with . For each trapezoid in this decomposition that is incideat to

at the bottom and to a segmehie L’ at the top, we take the top edge of the trapezoid as the intersection
of V., with the back facet that generatéd and store it with that back facet.

After we have carried out the above steps for all front and back facets, we have associated with each
facet a list of line segments corresponding to intersections of the different vertical strips with the facet.
Since a strip is not propagated below an intersected facet, it is easy to see that the line segments associate
with a facet are non-crossing (but may be touching). For each facet, we compute the arrangement [13] of
the set consisting of the associated segments and the edges bounding the facet.

Let f be any front facet and laet be any cell of the arrangement computed pnThenc is the
footprint of a support ory for build directiond, hence a black polygon, iff there is a cellon a back
facetb above f, such that’ projects exactly te. (The cellsc andc¢’ form the bottom and top facets of a
support cylinder; the other facets of this cylinder are vertical and bounded below and above by edges of
¢ andc’.) Any other cell of f is a gray polygon.

We can identify the black triangles g¢f directly (instead of first computing the black polygons). We
project the arrangement on each front facet taxthwplane, triangulate its cells, and then lift the triangles
back to the front facet. We make a ligt, of these lifted triangles along with their centroids, and gort
lexicographically on the-, y-, andz-coordinates of the centroids, taken in that order. We make a similar
sorted listB for the the back facets. Note that if a cel,from a front facet and a celt/, from a back
facet form the bottom and top facets of a support cylinder, thand ¢’ have identical projections on
the xy-plane and will, therefore, be triangulated identically (if a deterministic triangulation algorithm is
used, e.g., [13, Chapter 3]). It should be clear now that a simultaneous scan of the two sorted lists suffices
to identify matching pairs of triangles, where one triangle is frBrand the other is fron¥ such that
the former is above the latter and projects exactly to it. For each matching pair, the triangl€ fsoa
black triangle on some front facet; all unmatched triangleg @ire gray triangles on front facets. (This
approach for matching triangles, using a lexicographic sort, is due to [11].)

In this way, we can compute all the black and gray triangles for each front facet. A symmetric approach
yields the black and gray triangles for the back facets.

Lemma 5.1. The set of black and gray triangles for all front and back facets of an n-vertex polyhedron
P can be computed in O(n?logn) time.

Proof. Correctness is clear from the discussion above. We establish the running time.

The number of line segments generated by intersecting front facets with anysgrig O(n), so
their trapezoidal decomposition has sizéDand can be computed in time(@ogn) per strip, hence
O(n?logn) for all strips.

The total number of segments (intersections) created on all the front facetbyothe propagation of
anyV,, is O(n). This is because the trapezoidal decomposition h@a3g apezoids and the segments of
interest are the bottom edges of a subset of these trapezoids. Since thefe)adrg, 3, the total number
of segments generated by them on all front facets(ig
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Now, consider a front facetf, and letm , be the total number of segments gntaken over all
strips V, . By the above discussior, ,m , = O(n?). (Note thatm , could be® (n?) for an individual
facet f. This could happen if, for instanc€) (n) back facets are abovg and overlap in the form of
a trellis. However,mef is still O(rn?).) As noted earlier in the discussion of the algorithm, since
a strip is not propagated below an intersected facet, the segmentsao& non-crossing; thus, their
arrangement has complexity(@;). It can be computed and triangulated in timé»Q logm ), and
yields Qim ) triangles. Taken over all front facets, there areZQ my) = O(n?) such triangles, and

they can be generated and sorted in tim({:(? m logm ;) = O(n?logn). Likewise for the triangles

from all the back facets. The resulting lists of/®) triangles each can be scanned im® additional
time to determine the black and gray triangles

5.4. Computing black, gray, and white triangles for parallel facets

Let f be a parallel facet. Recall that a black (respectively gray, white) trianglg isrone which is
in contact with supports for both (respectively exactly one, neither) of the direafiemsl —d. Let V,
be the vertical strip which is in the plane gfand exactly contains it. We may assume without lost of
generality that no vertex of is in the interior ofV,. (Each bounding line o¥’; contains at least one
vertex of f. If there is a vertex in the interior of s, we draw a vertical line through it and splftinto
two facets that each satisfy the assumption.) Let vertek f lie on one of the bounding lines &f; and
let verticesv andw lie on the other, withy abovew in directiond; note that the line segmeni® and
uw spanV,. Consider the back facets Bfthat either piercé’, aboveiv, or touchV, aboveuv and are
in the same halfspace 0f; as the outer unit-normatk, ¢, of f. (These are the back facets whose supports
are potentially in contact wittf whenP is built in directiond.) The intersections of these back facets
with V; is a set,A, of line segments. We do a trapezoidal decompositioA of the plane ofV; (note
that we do not consider the edgesfofvhen doing the decomposition). LEtbe the set of trapezoids in
this decomposition that are bounded from above by some segmararad are unbounded below. LEt
be the trapezoids obtained by intersecting the on&swith f. (Strictly speaking, some of the elements
in Ty may be triangles, which we take to be degenerate trapezoids.)

Fig. 9 illustrates the computation @%. Fig. 9(a) shows the back facets, b», b3, andba, that pierce
or touchV, aboveirv: by andb, pierceVy, b, touchesV, and is in the same halfspace ¥f asn , and
bz touchesV, but is in the halfspace df ; that does not contain ;. The supports needed by will not
be in contact withf, so we ignore it. The sed consists of the line segmenis, a,, anda,. Fig. 9(b)
shows the trapezoidal decompositionAfThe trapezoids of” aret,, t,, andr,; their intersections with
f, shown shaded, yields the s&i.

Symmetrically, we consider the front facets@that intersecV, at or belowizw. These intersections
yield a setA’, of line segments. We do a trapezoidal decompositiod’pfake the sef”’ of trapezoids in
this decomposition that are bounded from below by some segmetitafd are unbounded above, and
intersect these witlf to get a sef’; of trapezoids.

The set of black polygons fof is obtained by taking the intersections of every pair of trapezoids,
one inT; and the other irTfi. Any part of a trapezoid iff’; or Tji that is not a black polygon is a gray
polygon. The complement of the union of the gray and black polygons igrthe set of white polygons.
We can compute these three classes of polygons easily by sorting the vertical éfigesdT; into two
lists and then doing a simultaneous scan of the two lists. Since these polygons are actually trapezoids, we
can generate the corresponding triangles easily.
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Fig. 9. Computation of the sdt; (shown shaded) for a parallel facgt

Lemma 5.2. The set of black, gray, and white triangles for all parallel facets of an n-vertex polyhedron
P can be computed in O(n?logn) time.

Proof. The correctness of the method is clear from the above discussion. For the running time, note
that the setsA and A’ each have size @) and can be computed in(®) time. Doing the trapezoidal
decomposition and computinfy and7; takes Qnlogn) time. Finally, sorting and scanning the lists

and computing the different polygons take&:@gn) time. Therefore each of the(@) parallel facets

can be handled in time @logn), and the lemma follows. O

5.5. Decomposing to minimize contact-area
At this point, we have for each front, back and parallel facePp# list of the black, gray, and white

polygons. As discussed in Section 5.2, only the gray triangles are relevant when deconfpdsing
minimize the contact-area of supports. We store the subdivision defined by the union of the set of gray
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triangles in a doubly-connected edge list and perform a sweep over them as in Section 3 to compute
the optimum decomposition plarfé. (Even though the algorithm in Section 3 is for convex polyhedra,

the sweep does not depend on convexity per se, and so it works for our collection of gray triangles as
well.)

As seen above, the set of gray triangles can be computed in tinfdd@ ). Also, from the proofs of
Lemmas 5.1 and 5.2, the number of gray triangles (%D The time to sort the vertices of the induced
subdivision byz coordinates, in preparation for the sweep, {@8ogn). During the sweep, each vertex
can be processed in time proportional to its degree, which implies a time boun@®ffér processing
all vertices, since the subdivision hag®) edges.

As noted at the beginning of Section 5, the volume minimization problem is easier, and essentially the
same approach works for this also. We will see in Section 5.7 that the size of the decomposition can be
controlled in Qnlogn) time. We conclude:

Theorem 5.1. The contact-area and support volume versions of Problem 2.1 can be solved in O(n?logn)
time for a non-convex polyhedron P with n vertices.

5.6. Experimental results

Our primary goal was to investigate the extent of support reduction achievable via decomposition
of typical models. Therefore, for convenience, we implemented a simpler, but slower, version of the
algorithm described above, for support volume minimization. The algorithm differs mainly in how the
footprints are computed — instead of using the earlier algorithm for cylindrical decomposition, we use a
somewhat less efficient approach, as follows.

Let f be a fixed front facet and létbe any back facet. We projeg¢tandb to thexy-plane and compute
the intersection of their projections (i.e., triangles), which yields a convex poly@@n, If C(b) # ¥,
then letp be any pointin it, say the centroid. If the pre-imagesandp;, of p on f andb, respectively,
are such thap, is abovep  in directiond, then p, is in contact with supports. This implies that the
pre-imageC s(b) of C(b) on f is in contact with supports. This follows since no facet/fpierces
another, so there cannot be another pginin C(b), whose pre-images ofi andb are in the opposite
order from those op. (Note that it need not be the case that the cylinder bounde&dby) and byC,(b)

— the pre-image of (b) on b — is a support cylinder, sindg or parts thereof, need not be immediately
above f; there could be parts of other back facets in between.) Given the polyg@nghat are found

to be in contact with supports, we can compute the footprint of supports loy taking the union of

the pre-images( (), of these polygons. (In our implementation, we used the functions provided by
LEDA [28] to perform the union and intersection operations.) We triangulate the footprint (respectively
the complement of the footprint) ofi to get the black (respectively gray) triangles gnWe handle

back facets in a symmetric fashion, using directied instead ofd. Thereafter, we apply the sweep-
based algorithm on the set of all gray triangles to compute the optimum position of the decomposition
plane.

The most expensive part of this algorithm turns out to be the union step in the computation of the
footprints. Note that the algorithm simply projects all back facets down ta fhglane, without regard
to any intervening facets. Thus, the complexity of the union of the polygh$ on a single front facet,

f, can be® (n?) in the worst case, an@ (n°) over all front facets. (An example of this is a configuration
of ®(n) front facets stacked on top of each other &n@:) back facets above them that overlap in the
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0-2190.st1 speedo.stl mj.stl
z-span: [—0.7,0.7], huin= 0.0 z-span: [0.0,3.2], huin= 1.9 z-span: [0.0,3.2], hun = 2.1

i
i 'fJ e

r59043b.stl engine2.stl cc.stl
z-span: [—0.3,1.1], huiw = 0.4, z-span: [—4.8,5.0], A = 1.3  z-span: [0.0,100.0], k.= 1.0

Fig. 10. Non-convex models tested. Herespan” denotes the span of coordinates inzurection; it is given to help visualize
the position/imin, Of the decomposition plane. The decomposition directdymoints vertically upwards.

form of a trellis. Notice that this situation would not create a problem for cylindrical decomposition,
since there we do not project through intervening front facets.) The total time to compute the union is
O(n?logn) in the worst case for any front facet [13], henc&:&ogn) over all front facets.

We performed our experiments on the six models shown in Fig. 10. The first five models were obtained
from Stratasys, Inc., a Minnesota-based company specializing in LM. To keep the running time of our
algorithm on these models reasonable, we reduced the number of facets in some of the larger models
— specifically,0- 2190. st | (to about 25% of its original number}peedo. st| (to about 15%),
andengi ne2. st (to about 18%). For this we used tBecimator software package frorRaindrop
Geomagic, Inc., a North Carolina-based company specializing in the design of CAD software. This
package reduces model sizes while preserving the original topology to the maximum extent possible.
The sixth modelcc. st |, was hand-generated; it is used to show that on some models our algorithm
may not achieve any reduction in support requirements.

Table 7 summarizes our experimental results for the six models. To give an idea of the relative sizes
of the models, the table also gives the dimensions of their axes-parallel bounding boxes. The models are
listed in the table in decreasing order of the reduction in support volume that is achieved (the sixth column
divided by the fourth). On the first four models, our algorithm achieved a reduction ranging from a factor
of seven to about a factor of four. On the fifth model, it achieved a reduction of about 1.4. It achieved no
reduction at all on the last modelc. st | , which is essentially a hollow cube, with walls of thickness 1
and with four holes on the top face. If this model is built without decomposition, the interior of the cube
will be filled with supports, except for the regions directly below the holes. Any decomposition plane
that intersects the model strictly above the inner base (which is at height 1), will generate two pieces for
which the total support volume is higher than without decomposition, since the region in the lower piece
that was originally below the holes is now filled with supports. The optimal position for decomposition
is any height in the intervdD, 1].
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Table 7
Experimental results for non-convex models. Experiments were performed on a SUN Ultra 60 Sparc machine with 512 MB of
main memory and a 450 MHz processor

model # facets min hmin non-decomp. run bounding box
volume volume time (s) Ixwxh
1 0-2190. st | 3,492 0.1 0.0 0.7 16,661 Ax15x 14
2 speedo. st 2,500 0.9 1.9 51 15,730 .2x19x%x32
3 nj.stl 2,832 1.7 21 8.1 13,911 .8x 4.6 x 3.2
4 r59043b. st 3,386 0.8 0.4 3.0 20,833 ALx21x14
5 engi ne2. st 4,180 174.9 1.3 251.6 41,156 12 6.2x 9.7
6 cc. stl 112 823,210.0 1.0 823,210.0 4.7 10 1020 x 1000

5.7. Controlling the size of the decomposition

The optimal plane computed by the algorithm in Section 5.5 could decompose a non-convex
polyhedron” into many polyhedra (as many &(n) in the worst case), which is undesirable since
it increases the cost of re-assemblifigldeally, the designer should be able to specify an inté&gexnd
the algorithm should compute, among along all possible planes that generate no maéfethighedra, a
plane which is optimal with respect to support contact-area or volume. We show how this can be done by
incorporating a preprocessing step in the algorithm. The idea is to partitiqretkis into Q) intervals,

I;, such that all planes whose heights aré;idecomposé® into the same numbet,, of polyhedra. We
then run the sweep algorithm of the previous section but do the minimization step only in those intervals
I; for whichk; < K.

Letz; <zo <--- <z, t <n, be the distinck-coordinates of tha vertices of P. The preprocessing
involves two sweeps. The first sweep is in the positidirection and it computes a set of intervals on
the z-axis and associates with each interval an integer which is the number of connected components
of P~ generated by any plane whose height is in the interval. Observe that the number of connected
components of~ with respect to a plane of height is the same as the number with respect to a plane
whose height is anywhere in the interva}, z;11); let this number bé . Thus, the first sweep computes
intervals of the forniz;, z;,1) and associates with each the integer Symmetrically, the second sweep
is in the negative direction and it computes intervals of the fo(ay, z;,1] and associates with each an
integerkj, which is the number of connected component®dfwith respect to any plane whose height
is in (z;, zj+1]. Once these two sets of intervals have been computed, a single scan of them suffices to
compute the desired intervalg and the corresponding integdrs Specifically, each intervdl; is either
of the form(z;, z;], with k; = k; +kJ_,, or of the form(z;, z; 1), with k; = k; + k7.

We describe the first sweep in more detail. At any time, the vertices of the different connected
components ofP~ form a collection of disjoint sets. We maintain these using a Union-Find-Makeset
data structure [12]. We initialize the structure to empty and set the current numhErconnected
components ofP~ to zero. Letz; be the current-coordinate in the sweep and &} be the set of
vertices of P at thisz-coordinate. We consider each vertex V; in turn and process it as follows. We
create a new set containing justand increment by one. Then for each neighbar, of v such thatu
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is already in the Union-Find-Makeset data structure we do the following.dhd v are in different
connected components, then we union the sets containargl v, and decrement by one. Notice that
in this sweep, we only “add” edges®, so the connected componentsf always merge, never split.
Thus, a Union-Find-Makeset structure suffices to maintain the connected compongnts After all
vertices ofV; have been processed, we &gtto c. At the end of the sweep, all the intervals, z;11),

and their associated integers will have been computed.

Excluding the Qnlogn) time for the sorting, the algorithm takeg(#x (n)) time, wherex (n) is the
slow-growing inverse Ackerman function. Hence this preprocessing step does not affect the asymptotic
running time of the decomposition algorithm of Section 5.5.

6. Conclusions and futurework

In this paper, we have presented a new approach to LM, in which the model is decomposed by a
plane into several pieces that can be built independently and then glued together. Several advantages ¢
this approach have been identified, including improved speed, greater versatility, and reduced support
requirements. We have presented efficient geometric algorithms to decompose both convex and non-
convex models so as to minimize the contact-area and the volume of the supports (Problem 2.1). For
convex models, the algorithms are based on the plane sweep paradigm, where formulas for support
contact-area and volume are generated, updated, and optimized as a function of the height of the swee|
plane. Non-convex models are handled by first identifying certain critical facets that are relevant to the
minimization and then using the same approach as in the convex case. Experimental results have beel
given that demonstrate the utility of the decomposition-based method.

There are actually four versions of Problem 2.1 depending on how we choose tdPbuddd P—:

(1) P* andP~ in directionsd and—d, respectively — the version solved in the paper;#2)andP~ in
directions—d andd, respectively; (3)P* andP~ in directionsd andd, respectively; and (4p* and

P~ in directions—d and—d, respectively. For a given modé?, the support requirements of one of the
methods might be better than the other three. For instancB,detisist of two pyramids, with a common
vertexv (i.e., one pyramid is a reflection of the other throughand letd be perpendicular to the base

of one pyramid. If we choose the decomposition pl&hesuch that it containg, then method 2 would
require no supports. For any choice Bf the other three methods would require a non-zero amount of
supports. Given a model, one strategy would be to run all four methods independently and pick the one
which minimizes the support requirements.

For convexP, the solutions for methods 2—4 are similar to that for method 1. For contact-area
minimization, method 2 is completely symmetric to method 1. In method 3 (respectively method 4),
only back (respectively front) facets need supports, regardless of the positiin tbius, the support
contact-area equals the total area of the back (respectively front) facets, so any posiidnagtimal.

The situation is similar for support volume minimization, except that the platforrf foand/orP~ need

no longer beH . For instance, in method 2, the platform fBI" (respectivelyP~) is the plane parallel to

H and coinciding with the extreme vertex in directidr{respectively—d), so the support volume needs

to be computed with respect to this platform rather than with respeft. t8imilar statements apply to
methods 3 and 4. In these methods, even though only back or front facets need supports, the positior
of H does affect the support volume (unlike contact-area); the optimal positioH fwan be found by
minimizing the expression for the total support volume, as in method 1.
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Unfortunately, the approach in Section 5 (where facets are decomposed into black, gray, and white
triangles) does not extend to methods 2—4 wikers non-convex. Consider, for instance, method 2.
Let ¢ be a black triangle from a front facet and assume #ianhtersectsr. Now, ¢+ is completely in
contact with supports, since it is built in directierd. However, the structure of the supports that will
be in contact withr— depends on the (yet-to-be-built) portionBf that is aboveH , which can be quite
complex. (This problem did not arise in method 1, for reasons discussed at the beginning of Section 5.2.)
Similar problems arise in method 3 for a black triangle belonging to a front facet and in method 4 for a
black triangle belonging to a back facet. At present, we do not know how to overcome these difficulties
and it appears that a different approach will be needed.

Throughout the paper, we have assumed a fixed decomposition dirdcaod found an optimum
plane that is normal td. A challenging next step is to consider the problem of computing, over all
directionsd, an optimum decomposition plane (while also limiting the number of pieces). The methods
developed in this paper could be useful in computing such a plane once a small set of candidate directions
has been identified.
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